SI USTED ES MIEMBRO ACTIVO DE LA HERMANDAD DE BOMBEROS EN SU RED SOCIAL Y PROFESIONAL - NUESTRO CORREO DE CONTACTO ES hermandadebomberos@hotmail.com - INSCRIPCIÓN A NUESTROS EVENTOS DE FORMACIÓN PROFESIONAL A TRAVÉS DE inscripcioncursolhb@gmail.com Y TE ESPERAMOS EN NUESTRO GRUPO DE TELEGRAM https://t.me/lahermandaddebomberos - DENTRO DE ESTA RED DE TRABAJO PROFESIONAL DE PRIMEROS RESPONDIENTES USTED TIENE DERECHO A DIFUNDIR EVENTOS SOLICITÁNDOLO A NUESTRA ADMINISTRACIÓN A CAMBIO DE BECAS SIN COSTO DE INSCRIPCIÓN PARA NUESTROS MIEMBROS ACTIVOS – PUEDE ENVIAR ARTÍCULOS TÉCNICOS SOLICITANDO SU PUBLICACIÓN – PUEDE COMPARTIR CON EL RESTO DE LOS MIEMBROS SU MATERIAL O EL MATERIAL AQUÍ SUBIDO HACIENDO CLICK EN “COMPARTIR” – PUEDE ENLAZAR SUS CUENTAS DE TWITER Y FACEBOOK Y COMPARTIR NUESTRO Y SU MATERIAL – PUEDE CREAR GRUPOS Y UNIRSE GRATUITAMENTE A ELLOS PARTICIPANDO DE TODOS LOS FOROS - PUEDE INICIAR DISCUSIONES EN LOS FOROS – PUEDE MODERAR EL CONTENIDO DE SU PERFIL  – PUEDE SOLICITAR BECAS - PUEDE SUBIR FOTOS Y VÍDEOS, HACER PUBLICACIONES DE BLOG Y PUBLICAR EVENTOS COMPARTIÉNDOLO CON SUS AMIGOS - Y SOBRE TODO PUEDE SENTIRSE PARTE DE ESTA GRAN FAMILIA DE PRIMEROS RESPONDIENTES - WHATS APP +541153177493 -  PAGINA OFICIAL DE FACEBOOK ES www.facebook.com/lahermandaddebomberos - YOU TUBE LA HERMANDAD DE BOMBEROS -   TWITER @RedLaHermandad  -   INSTAGRAM www.instagram.com/lahermandadebomberos/        -        Y RECUERDA SOMOS UNA ONG Y NUESTRA PRINCIPAL ACTIVIDAD ES LA FORMACIÓN

La Hermandad de Bomberos

LA HERMANDAD DE PRIMEROS RESPONDIENTES ANTE UNA EMERGENCIA

LA INTENCIÓN DEL ENTRENAMIENTO CON MANGUERAS - TÉCNICAS EFECTIVAS DE CHORROS / ARTICULO TECNICO DE JOHN MADONOUGH - TRADUCCIÓN ELVIO SCHINDELE


 

 

La Intención del Entrenamiento con Mangueras - Técnicas Efectivas de chorros

John McDonough (Sydney, Australia) y Karel Lambert (Bruselas, Bélgica)

Traducido y adaptado por Elvio Schindele Instructor CFBT-arg

CEBE (Centro de Entrenamientos para Brigadas de Emergencia) Río Tercero -Córdoba - Argentina

¿Cómo sabemos que nuestro entrenamiento es efectivo? La mayoría de la gente diría que debemos juzgarlo en última instancia,  la eficacia de nuestro entrenamiento por lo bien que lo llevamos a cabo en las practicas de incendio.  Así que la  pregunta seria, ¿cómo medimos nuestro desempeño en en las practicas de fuego? ¿Cómo sabemos si nuestra formación está aumentando nuestras capacidades (o las inhibi)? en  particular, ¿cómo sabemos que nuestra formación de chorros de manguera es  eficaz y que esas técnicas son tan efectivas como puedan  ser cuando si se utilizan para controlar el ambiente interior y  en última instancia para apagar el fuego?

Del mismo modo, ¿cómo juzgamos si un equipo ha sido tan eficaz como  podrían estar en un incidente real, dadas las circunstancias y  equipos a su disposición? Si aparece un equipo para llevar a cabo mal sus tareas en un incidente, ¿es justo decir que estaban mal entrenados o  hicieron la mejor tareas las circunstancias que confrontaron  ellos?

O por el contrario fue el bombero bien entrenado, pero por alguna  razón es siempre un artista pobre (que carece de motivación, incapaz  físicamente o tal vez incapaz de comprender la  teoría)? ¿Hu otro equipo con mejores habilidades debería  haber tenido  mejores resultados? ¿Qué calibre usamos para medir si nuestros bomberos fueron un 20% mas  efectivos, o 50%  más? ¿O es que tenemos  un entrenamiento práctico que esta siempre tan eficaz como lo  posiblemente puede ser?

La pregunta clave sigue siendo. Si esperamos tener los bomberos de alto rendimiento tenemos que ser capaces de  medir su eficacia y medir su mejora durante el entrenamiento y en las prácticas del fuego.

¿La ciencia tiene la respuesta?

Científicamente se busca dar respuestas objetivas a algunas de las preguntas anteriores. Esto se hace  tratar de medir y registrar en un evento que es cuantificable. Estos eventos pueden ser cuidadosamente  experimentos en laboratorios  o incluso en más grandes estructura adquiridas. De esta manera esperamos establecer una 'benchmark' desde el cual podemos juzgar si estamos cumpliendo nuestros objetivos ó si no.

Sin este "método científico" y los controles y la disciplina que trae nuestra capacidad, para evaluar  la eficacia bombero siempre será contaminado por los prejuicios personales y la evidencia anecdótica que hace  por lo que la mayoría de nosotros llamamos "experiencia".

Desafortunadamente las experiencias pueden variar mucho de un bombero  a otro y hasta los bomberos que asistieron a los muchos fuegos pueden salir con muy diferentes  experiencias, todas “válidas" desde su punto de vista personal. Por lo tanto, no debería ser una sorpresa que los bomberos de diferentes países pueden ser muy diferentes de lo que hacen en sus tácticas más eficaces y  técnicas. Variables, variables y más variables!

El problema al aplicar el método científico a la lucha contra el fuego es que hay muchas variables en el lugar del incendio. Experimentos científicos precisos y repetibles se basan en la identificación y control  de variables. Pero esto presenta un problema, ya que cuantas más variables se elimine de los experimentos  mucho menos "realista" hace que sea. En efecto, estamos tratando de introducir el control y el orden a una situación que  puede ser exactamente lo contrario. No es extraño que para el bombero promedio no puede haber más que un poco  la desconfianza (por alguna incredulidad absoluta) en los resultados de  'laboratorios” cuando esto no es lo que creen, y  ellos son testigos de primera mano en los fuego a los que asisten. También conduce a los comentarios inevitables  como, 'Eso está bien para sus experimentos, pero ¿y si ...?' (Añada aquí cualquier número de variables, tanto reales como imaginarias).

Ahora bien, esto no significa que la ciencia no tiene un lugar en los incendios, por supuesto que sí la tiene. De hecho,  es la mejor manera en que podemos avanzar en nuestros conocimientos y comprender mejor el reto  ambiental en el que trabajamos. En experiencias pasadas que  fueron nuestras sustitutas para el conocimiento en el sentido  que más experiencia asumimos y en condujo a un mayor conocimiento. De hecho culturalmente, muchos bomberos fueron adoctrinados para creer que “la experiencia fue igual al conocimiento”. Uno vino a aceptar que si un  bombero había estado en muchos incendios entonces, por definición, que estaría más y mejor  informado que el resto. Si sólo  fuera tan fácil!  Mientras pueda racionalizar esto en cómo me siento aquí, me conozco que a menudo me quedo en la trampa de creer que mis propias experiencias y el tiempo como bombero me acreditan con más conocimiento de lo que realmente tengo.

En el lugar del incendio

Si nos fijamos en el lugar del incendio, en general, podemos ver una serie de variables que juegan un papel importante en cómo vamos a realizar nuestros trabajos con más eficacia durante un incidente. Hay una serie de factores importantes, donde nuestras acciones (y decisiones) sobre la base de las variables predominantes pueden afectar al rendimiento. ¿Cómo fue avanza y avanzara el fuego? Por qué creemos que elegimos las estrategias correctas? ¿Estamos lentos o rápidos en la ejecución de esas  estrategias? Podemos tener dotaciones que llegaron tarde, pero emplean la estrategia o las tareas de forma correcta? Llegamos temprano, pero empleamos las estrategias equivocadas?. Las dotaciones  que utilizan las técnicas adecuadas con el mal  uso de equipos o el equipo adecuado con las técnicas equivocadas?. O las dotaciones tratando de poner en práctica las tácticas adecuadas sin suficientes bomberos o la táctica equivocada con los bomberos suficientes?.

Hay variables dentro de las variables!  Si nos fijamos en las técnicas de chorro de manguera  por ejemplo. La técnica que los bomberos están utilizando puede o no ser la más adecuada,  según la situación. Por otra parte, suponiendo que es la técnica es adecuada, se podría entonces hacer  bien o mal. Y profundizando aún más, si se realiza una técnica bien o  mal está determinado por su propio subconjunto de variables. La tabla a continuación (Figura 1.) Analiza las variables  o las acciones que tienen lugar cuando los bomberos utilizan un "ataque indirecto" durante la extinción.

Las diferentes  posibilidades de las variables de esta tabla solo puede llevarse a casi mil posibles resultados.

Este tipo de extinción puede ser muy eficaz cuando se utiliza de manera apropiada y, en particular, cuando los compartimentos están totalmente generalizados. Esto lo pueden  hacer en un número de maneras:

1. Absorbe el calor - gotas de agua se expanden por el calor y se tranforman a vapor.

2. Inerte" en la mezcla de combustible  se transforma y desplazar el aire (oxígeno).

Para una máxima eficiencia de estos dos fenómenos se necesita  una serie de acciones que se esten realizados correctamente.

Algunas de las acciones podrían ser consideradas más importantes que otras, mientras que otras acciones están estrechamente  vinculadas. Por ejemplo, para lograr el 'tamaño de las gotas "correcta debemos combinar el" caudal "correcto, la "presión" y "ángulo de cono '(esto es suponiendo que tenemos una boquilla que es capaz de producir el  tamaño de gota correcta). Asimismo, la «duración» y «frecuencia» de la aplicación del agua. Para llevar a cabo el mejor ataque indirecto, más eficaz, los  factores se deben realizar correctamente.

Extinguir con agua

Antes de que vayamos demasiado lejos, tal vez es hora de mirar más de cerca cómo se utiliza el agua para controlar y  extinguir el fuego. El agua se aplica en forma líquida al fuego y se transforma en vapor. El  calor absorbido se compone de varios componentes.

Calor específico del agua

Se necesita una cierta cantidad de energía para calentar una cantidad de agua. Este valor se lo conoce como calor específico del agua. Se indica con la letra C. Su unidad es J / kg K. Este valor es 4,186 J / kg K para el agua.

Cuando se utiliza agua para enfriar los gases, un pulso corto se da en la capa de humo. La energía se transfiere  desde el humo a las gotitas de agua fría hasta que el agua alcanza una temperatura de 100 ° C (373 K).

La cantidad de energía se calcula multiplicando la masa (m) por el calor específico (c) y el aumento  de la temperatura (Delta T). Esto conduce a la siguiente fórmula:

 

Calor latente de vaporización del agua

El agua absorberá más energía para vaporizar. Este valor se conoce como el calor latente de  vaporización del agua. Se indica con la letra L. Su unidad es kJ / kg. Este valor es 2.260 kJ / kg para  agua. La energía se transfiere desde el humo a las gotitas de agua y las calienta hasta que el agua es  completamente vaporizada.  La cantidad de energía se calcula multiplicando la masa (m) por el calor latente (L). Esto conduce a la siguiente fórmula:

 

Cuando se comparan ambos valores (C y L), está claro que la transición de 100 ° C el agua en 100 ° C  en vapor, absorbe más energía que el calentamiento del agua hasta que alcance 100 ° C. Seis veces más  se necesita  de energía para transformar el agua en vapor que se necesita para calentar el agua.

Calor específico del vapor

Cuando el vapor se dispersa en la capa de humo, más energía se transfiere desde el humo al vapor de agua. El resultado será un aumento de la temperatura de vapor. Este proceso continuará  hasta que exista un equilibrio térmico entre el vapor y el humo.

Vapor tiene un valor diferente para el "calor específico" que el agua. Este valor depende de la  temperatura del vapor. Para este cálculo se utiliza un valor medio. Este valor es 2,080 J / kg K.

La fórmula utilizada es la misma que la utilizada para el agua.

La diferencia de temperatura (Delta T) es la diferencia entre la temperatura final del vapor 373 K. Para hacer un cálculo de un supuesto debe hacerse para que la temperatura final del vapor. En este documento, se utilizará el valor de 300 ° C (573 K).

El calor total absorbido

Idealmente, cuando se utiliza agua para enfriar la capa de humo, toda el agua que se utiliza se está transformando  en vapor. Para estimar la cantidad de energía que es absorbida, los tres componentes de "calor" necesitan  ser añadido. Cuando la adición de la influencia de la temperatura.

 

 

Se puede observar que la influencia de la temperatura inicial es limitada. Con el fin de simplificar nuestros cálculos, utilizarán 3MJ/kg como valor predeterminado para la cantidad de energía que un litro de agua  puede absorber. Cuando el servicio de bomberos utiliza agua, rara vez le dan lugar a un valor tan alto y que nunca lo hará  ser 100% efectivo.

 

 

 

 

 

Formación de vapor.

Cuando el agua se convierte en vapor esta se expande. Un litro de agua generará una gran cantidad de  vapor. Esto se puede calcular con la ley universal de los gases.

 

Siendo P la presión en Pascales (Pa), siendo V el volumen en m³, siendo n el número de moles de  moléculas del gas a la mano, siendo R la constante universal de los gases (8,314 J / kg K) y T son el  la temperatura en grados Kelvin (K). Cuando la ecuación se resuelve para V, la siguiente solución se encuentra:

 

El peso molecular del agua es 18 g / mol. Por lo tanto, 55,55 moles de agua están presentes en uno  kilogramo (litros) de agua.

La temperatura final del vapor determinará la cantidad de vapor que se produce por un litro  de agua. En la tabla a continuación una serie de valores se da.

 

 

 

El vapor es un gas inerte. Este es un factor importante en la lucha contra el fuego. Cuando se añade vapor en una  mezcla de gas, su intervalo de inflamabilidad se encoge. En un cierto punto, la mezcla ya no será inflamable  y por lo tanto se mostrara inerte.

Influencia del tamaño de las gotitas

El tamaño de la gotita es un parámetro importante. Si las gotas son muy pequeñas, se evaporan  demasiado pronto después de salir de la boquilla y sólo la capa de humo más cercano al bombero se enfriará. Si  las gotas son demasiado grandes, se pasan a través de la capa de humo sin evaporarse por completo.

Algunos pueden golpear el techo o paredes en las zonas altas y el agua se evaporará en contacto con estos absorbiendo calor de ellos y casi nada de los gases y humo. Otra posibilidad  es que caigan al suelo. En este caso van a viajar a través de la capa de humo por segunda vez.

Grimwood sugiere que 0,3 mm es del tamaño ideal para una gotita. Gotitas de este tamaño debe serlo  suficiente grandes para proporcionar la penetración en el humo caliente y lo suficientemente pequeña como para vaporizar fácilmente.

Ahora que tenemos una comprensión de la ciencia básica detrás de la utilización del agua el siguiente paso es integrar  que el conocimiento junto con nuestra evaluación continua de la eficacia de los bomberos. Al hacerlo, nos  puede proporcionar alguna medida para ayudar a evaluar con mayor precisión nuestro nivel de capacidad. En última instancia,  pueden servir de base para determinar los caudales mínimos, número de líneas de mangueras, tamaños de las dotaciones, tácticas  y estrategias. Ahora vamos a ver cómo podemos quizá presentar al bombero algo "subjetivo"  acciones en algo que podemos 'enchufar' en la ciencia.

Uso y comprensión de rúbricas

La clave para evaluar nuestra eficacia es reconocer que existen ciertas variables o criterios es  identificarlos. Una vez hecho esto podemos asignar niveles de "valor" a cada variable contra la cual  los niveles de rendimiento se pueden comparar. Una manera de evaluar nuestro desempeño es utilizar la evaluación

"Rúbricas". Una rúbrica coincide con los criterios establecidos en contra de un valor de "rendimiento". Este valor puede ser numérico  como un valor de porcentaje o una descripción de la actuación como "adecuado" o "pobre". Puede  también utilizarse para definir un nivel de competencia, es decir, "competente" o "aún no competente". También incluye  una descripción (o ejemplo) que pone de manifiesto el nivel de rendimiento. Las rúbricas son una excelente manera para que  bomberos para entender los elementos que componen una habilidad o técnica y la forma de lograr un alto  rendimiento. También puede proporcionar una matriz a partir de que los formadores  pueden evaluar el rendimiento.

Tabla 3. Muestra una rúbrica para evaluar la eficacia de enfriamiento del gas con pulso corto.

La matriz es  compuesto por:

1 criterios importantes que se consideran necesarios para la realización de la técnica.;

2. Un estándar de desempeño.

3. Una descripción de los diferentes indicadores de rendimiento.

La matriz de valoración se puede utilizar en un número de maneras. En primer lugar podemos evaluar un criterio individual, por ejemplo,

Ángulo de la boquilla. Este es el ángulo que la boquilla se lleva a cabo en relación con el suelo. Esto es extremadamente  importante con respecto a la colocación de las gotitas de agua. Como la imagen describe pequeña muestra,  si la boquilla es de aprox. 45 ° respecto a la horizontal todas las gotitas va a terminar en los gases de fuego, lograran un rendimiento superior al 75%. Por el contrario, si el ángulo de la boquilla es sólo el 25 ° la mayor parte de las gotitas terminará  en el suelo en lugar de los gases como refrigerante. Como resultado, el ángulo se evaluó como el logro de menos de 25%  eficiencia. Una distinción similar se hace también en los demás criterios, tales como “tamaño de la gota y cono  ángulo”.

Además de analizar cada uno de los criterios por separado, la matriz se puede interpretar de manera más global.

En pocas palabras, si tenemos el ángulo el tamaño de gota, el cono y la boquilla más eficaz, podemos esperar no estar en  menos 75% eficaz para la técnica general. Pero si tenemos el tamaño de la gota incorrecta, el mal ángulo de la boquilla esta será proporcionalmente menos eficaz. Como se señaló anteriormente, algunos de los criterios están estrechamente vinculados. Por ejemplo ángulo de cono y tamaño de gota. No es posible tener la gotita correcta  tamaño (o incluso una gota en absoluto) si el ángulo del cono es demasiado estrecha o una corriente recta. Sin embargo el  tamaño de las gotas y ángulo de cono no se ven afectados por el ángulo de la boquilla.

La naturaleza enlazada de algunos de los criterios debe tener en cuenta cuando se ve la rúbrica de un "conjunto de  técnica” base.


Tener sentido de la Ciencia

Hay otro uso importante para la rúbrica. La ventaja de desarrollar una matriz de valoración para cada uno de nuestras  técnicas de chorro de manguera significa que ahora tenemos un cierto nivel de medición cuantitativa de las formas más eficaces en la que  nuestros bomberos están usando el consumo de agua. ¿Es perfecto? No, pero puede ayudar a dar sentido  de la ciencia de la extinción con agua. A medida que la ciencia se explica a continuación, una variable importante en  las ecuaciones es el % de eficiencia.

Este porcentaje se puede tomar de las rúbricas. Tomemos otra  forma de mirar a la técnica de extinción "ataque indirecto".

El ataque indirecto funciona de dos maneras:

• El calor se extrae de del recinto.

• El vapor de agua presenta un ambiente inerte, ya que expulsa el oxígeno del  medio ambiente absorción de calor.

Absorción del calor.

 La velocidad de liberación de calor determina la intensidad del fuego es. La HRR es expresada en kW (o MW), Se indica la cantidad de energía que se produce por unidad de tiempo.

Ejemplo:

Un incendio 3 MW libera 3 MJ por segundo. Cuando tal fuego se quema durante diez minutos, una cantidad total de 1800 MJ (o 1,8 GJ) se han producido.

 

Con el fin de calcular la capacidad de enfriamient, la tasa de flujo (Q en kg / s) tiene que ser multiplicado  por el total absorbido decalor para 1 kg de agua.

 

Como se mencionó antes, este valor sólo se hará realidad si la eficacia es del 100%. En realidad, eficiencia del bombero rara vez será 100%. Valores tan bajos como 50% o 25% son más propensos (ver la rúbrica). Inferiores  eficiencias son causadas ​​por el agua que fluye lejos antes de ser transformada en vapor y el vapor  que fluye fuera de la recinto antes de ser calentada a 300 ° C. El efecto de la eficiencia puede ser  visto en la tabla de abajo. Bomberos menos eficientes pueden carecer de la capacidad en serio!

 

 

Cuando la capacidad de absorción de calor excede la producción de calor del fuego, el fuego se  extingue. Cuando el calor del fuego es absorbido por el agua, se reduce la pirólisis y desarrollo el fuego. En la tabla se puede observar que es posible extinguir el fuego con un bombero eficiente al 50%. Si la eficiencia se reduce a 25%, el bombero tendrá dificultad en  para causar la extinción del incendio. Normalmente se necesita más tiempo y más agua para hacerlo.

Por supuesto, es importante tener en cuenta que existe un límite geométrico para esto. En un apartamento, puede ser un incendio en varias habitaciones. No será posible aplicar el agua en varias habitaciones  simultáneamente usando sólo una boquilla. Otro ejemplo es el de un incendio en una sala. Físicamente, no es posible  para dispersar las gotitas de agua en el volumen completo en sólo un segundo de tiempo. En tales casos, múltiples  líneas pueden ofrecer una solución.

Efecto de inertización

La cantidad total de vapor de agua se puede calcular multiplicando el volumen generado por litro por la velocidad de flujo.

 

Con V siendo el volumen de vapor generado por un litro de agua (m³ / kg) y siendo q la velocidad de flujo (en kg / s).

Una vez más, el flujo nunca será 100% eficiente. Una parte del vapor fluirá fuera del recinto a través de ventanas y puertas. Por otro lado, el volumen no necesita ser llenado  completamente con vapor de agua para extinguir el fuego.

Es muy importante darse cuenta de que el vapor de agua contribuye en gran medida al efecto de la extinción.

El ataque indirecto es capaz de extinción de incendios con una HRR que es mayor que la cantidad de calor que  puede ser absorbido por la capacidad de absorción de calor del flujo. Durante el ataque indirecto, los dos efectos  (refrigeración y de inertización / dilución) están ambos jugando un papel importante. (Nota: el lector debe darse cuenta  que esta combinación de los dos efectos es más compleja de lo que se explica en este documento).

Un ejemplo de la ciencia en acción:

El agua que viene de la boca de extinción es de 10 ° C. Esto corresponde a 283 K. Las gotas de agua se calientan a 100 ° C (373 K). La diferencia de temperatura es 90 K. Un litro de agua se utiliza, este  corresponde a 1 kg.

 

 

 La cantidad de energía necesaria para convertir el agua en vapor de agua es:

 

 

 


En el ejemplo anterior, 376 kJ se utiliza para calentar el agua y 2.260 kJ se utiliza para transformar el agua  en vapor. Esto significa que se necesita 6 veces más energía para transformar en vapor que se necesita para  calentar el agua. El vapor se calienta a 300 ° C (573 K). La diferencia de temperatura es 200 K.

 

El agua procedente de la boca de extinción ha sido calentada a una temperatura de 100 ° C y ha sido  transformado en vapor de 300 ° C.

 

 

 

En los cálculos anteriores, la temperatura del vapor resultante fue de 300 ° C (573 K). Esto conduce a la  siguiente cantidad de vapor.

 

 

Cuando se realiza un cálculo similar para estimar el efecto de ataque indirecto, el siguiente resultado  se encuentra:

Un bombero utiliza una boquilla de baja presión con un caudal de 230 litros por minuto. La velocidad de flujo en kg / s  se calcula como sigue:

 

Una capacidad de refrigeración de 11,49 MW significa que a cada segundo, una cantidad de calor de 11,49 MJ puede ser  absorbida. Cuando se trabaja con una eficiencia del 100%, se produce la siguiente cantidad de vapor.

Un incendio en una habitación es atacado por el servicio de bomberos, con un caudal de 230 lpm. Las dimensiones de la habitación  son 4 m por 5 m por 2,5 m. El volumen de la sala es de 50 m³. Cuando el flujo es 100% eficiente, un volumen de vapor de 50 m³ se generará después de 5 segundos de la aplicación de agua. Esto hará la extinción del fuego porque el vapor generado se ha desplazado a todo el oxígeno.

Hacer bien las cosas sencillas

La ciencia nos muestra que hay una diferencia significativa entre los bomberos que pueden poner  su  agua en el formato adecuado, en el lugar correcto y en el momento adecuado y los que no pueden. Un bombero  que es tiene un 75% de eficiencia con su agua tiene casi tres veces la potencia de extinción de un bombero  que es sólo tiene el 25% de efectividad. La diferencia para el ojo inexperto puede ser sólo una ligera variación en el cono del  ángulo, ángulo de la boquilla o tamaño de las gotas, pero el resultado final es que el agua no está llegando a donde tiene que  ir. Con tres veces menos potencia de extinción, los equipos de bajo rendimiento se colocarán en más  peligro y tomar más tiempo para impactar al fuego.

Mediante la utilización de este tipo de metodologías como las evaluaciones de rúbricas, podemos ofrecer a los bomberos una facilidad  de entender la matriz de la crítica de su nivel de habilidad e identificar dónde pueden mejorar. Con la comprensión de la ciencia, los bomberos pueden ver los efectos de la técnica correcta y tener beneficios en el desarrollo y mantenimiento de sus habilidades. Al entrenar duro y aprender a realizar las técnicas basícas de chorro de manguera, así, los bomberos no sólo serán más seguros, pero proporcionar un mejor servicio a la  comunidad.

1 Brandverloop:. Technisch bekeken, toegepast tactisch, Karel Lambert & Siemco Baaij, 2011

2. El agua y otros medios de extinción, Stefan Särdqvist, 2002

3. Grimwood Paul, Ed Hartin, McDonough John & Raffel Shan, 3D de lucha contra incendios, Formación,

Técnicas y Tácticas, 2005

 

Aporte del grupo Internacional de Instructores CFBT

DOCUMENTO DE DESCARGA EN PDF:

La Intencion del Entrenamiento con Mangueras.pdf

Vistas: 1180

Etiquetas: Córdoba-Arg., Dpto., Entrenamiento, Federación, Incendios, Prov., de, del, la

Comentario

¡Tienes que ser miembro de La Hermandad de Bomberos para agregar comentarios!

Únete a La Hermandad de Bomberos

Comentario de CREADOR DE LA RED el agosto 7, 2014 a las 9:54pm

Estimado Jaime tus discusiones con Elvio son casi un clásico en LHB. Pero sinceramente entiendo el punto que planteas y no creo que sea ni 100% real ni 100 % sincero de tú parte. Ademas creo que si estas a la altura del articulo porque vos mismo has escrito excelentes artículos ademas de vender equipamiento para incendio. 

Por un lado yo recorro Cuarteles y escuche relatos de Bomberos que han utilizado estas técnicas y que han sido muy útiles (Y me refiero a gente conocida que sabe de lo que habla como Directores de Incendio en la Academia Nacional de Bomberos Voluntarios). Por otro lado es lógico que sirvan porque quien ha estado en un incendio de compartimento entiende rápidamente que son útiles.

Los incendios a los que vos te referís obviamente se extinguen de otra manera y esto cae de maduro talves por eso el comentario de Elvio. Pero lo que si me parece de mal gusto es decir que los Bomberos en Iron Mountain murieron por leer estos artículos.

Yo creo que las causas son un poquito mas complejas mi hermano Chileno y vos lo sabes.

Espero sigas comentando y creando polémica que me gusta pero siempre siendo objetivo y con respeto.

A mi manera de ver tanto la traducción como el articulo no solo son excelentes sino que han sido realizados por referentes mundiales con los últimos conocimientos en el viejo continente.

Comentario de Maria Eugenia Nadaya el agosto 7, 2014 a las 9:48pm
El heroismo no lleva a ningun lado. Considero que las personas que realizaron este articulo y el cual amablemente fue traducido al español por un instructor de CFBT, analizaron y estudiaron mucho este tema y por ello llegaron a estas conclusiones. Apagar incendios por inundacion no es lo correcto ya que sabemos por logica que lo que no daño el fuego lo haremos nosotros, es hora de actualizar las tecnicas y mejorar los tiempos de respuesta. Saludos.

LÍDER
Comentario de Elvio Schindele el agosto 7, 2014 a las 9:36pm

Amigo creo que usted tiene un serio problema no solo de entendimiento y aceptación, sino de táctica  operativa, y solo deja en claro que Ustd, no entiende que es lo que se plantea en este articulo o tal ves es demasiado avanzado para usted, no lo se...Que los bomberos se estén muriendo no tiene que ver con agua, por lo que le recomiendo preguntarse... Porque? Y dejar de echarle la culpa a la cantidad de agua cosa que no tiene nada que ver con la muerte de bomberos, de echo deberían empezar a capacitar a las bomberos en base a Ciencia y dejar la Historia y Heroísmo para un asado con amigos...saludos

Comentario de Jaime Núñez Sotomayor el agosto 4, 2014 a las 9:22am

Excelente técnica.....para incendios de contenedores.

No existe incendio en la historia de la humanidad con llamas saliendo por puertasd y ventanas, que haya podido ser apagado enviándole menos agua que la que puede absorber el calor de combustión que se genera....si alguien conoce algún caso que lo comente.

Los incendios de "compartimientos" son el 5% (cinco) del total de incendios, pero producen el 95% de las pérdidas humanas y materiales.

El problema con estos artículos es que muchos bomberos sienten reforzada su idea que "con buena técnica puedo enfrentar cualquier incendio con mi lanza/pitón casillero".

Sea un papeler o una bodega de colchones, si no se envía el caudal adecuado a superior, el incendio simplemente no se apagará, un montón de humeantes escombros y fierros retorcidos no son "incendio controlado" a pesar que a todas las generaciones de bomberos se las ha instruido para creer eso.

Un ejemplo cercao está con el incendio de Iron Mountain, con además 10 bomberos muertos. Ataque inicial con 3 chorros "casilleros" que lo único que hicieron fue hacer que sus usuarios se expusieran al peligro muriendo 10 de ellos.

Ese era un incendio para tal vez 40.000 lpm, sin embargo se le aplicaban con suerte 600 lpm entre los tres pitones/lanzas.....el resultado fueron 10 muertos, otros lesionados y un cascarón calcinado.

Si no se sabe como enviar 10.000, 20.000 o muchos mas lpm a 1 km, el momento del incendio no es buen momento para empezar a entrenar.

Comentario de CREADOR DE LA RED el agosto 3, 2014 a las 10:24am

Excelente articulo de Jhon y Karel, talves la mejor enseñanza no esta dentro del articulo sino en el contexto del mismo. Dos escuelas diferentes, de dos países diferentes con dos profesionales diferentes trabajando juntos para el resto de los Bomberos del mundo. solo faltaba la traducción de un Bombero Argentino y la difusión en La Hermandad de Bomberos

Comentario de miguel luis farfan gomez el agosto 3, 2014 a las 5:17am

exelente.a practicar se adicho

COMPARTIR EXPERIENCIAS E INFORMACIÓN PROFESIONAL, BUSCANDO LA UNIDAD DE LOS PRIMEROS RESPONDIENTES...SENTIRSE PARTE DE ESTA GRAN FAMILIA...

Notas

ASOCIACIÓN CIVIL SIN FINES DE LUCRO

Creada por CREADOR DE LA RED Abr 13, 2016 at 8:42pm. Actualizada la última vez por CREADOR DE LA RED Mar 31.

PRESIDENTE DE LA HERMANDAD DE BOMBEROS CHRISTIAN M. POMPEI "TITO"

Creada por CREADOR DE LA RED Nov 12, 2016 at 12:46pm. Actualizada la última vez por CREADOR DE LA RED Mar 31.

CONDICIONES PREDETERMINADAS DE SUSCRIPCIÓN AL SITIO LA HERMANDAD DE BOMBEROS

Creada por CREADOR DE LA RED Jun 24, 2012 at 12:39pm. Actualizada la última vez por CREADOR DE LA RED Nov 19, 2016.

Publicaciones de blog

Última actividad

A Jorge Jimenez Saucedo le gustó la conversación 170 - NFPA - EDIC. 2018 STANDARD FOR FIRE SAFETY AND EMERGENCY SYMBOLS (INGLES, 80 PAGINAS) de CREADOR DE LA RED
Hace 1 hora
Icono del perfilPAULO C. PAUTASSO, Enriquejha y Stella Abu se unieron a La Hermandad de Bomberos
Hace 3 horas
Alejandro Coronel Barredo comentó sobre la publicación en el blog ¿PORQUE CHILE TIENE UNA DE LAS TASAS DE MORTALIDAD MÁS BAJAS DEL MUNDO? de CREADOR DE LA RED
"Saludos, de igual manera en los diferentes Cuerpos de Bomberos, se han implementado estrictos protocolos de intervención cuando hay contacto con víctimas y turnos de permanencia en cuarteles con dotaciones definidas por rol, sin…"
Sábado
Las 6 entradas de blog de CREADOR DE LA RED se mostraron en una publicación
Sábado
El video de CREADOR DE LA RED se mostró en una publicación

COVID-19: Japanese Research Elucidates Risk Of Virus Transmission Via Emission Of Micro-Droplets

A virus transmission research from Japan says micro-droplets that linger in the air after a cough, sneeze or during conversation may carry the virus. Researc...
Sábado
CREADOR DE LA RED publicó videos
Sábado
A CREADOR DE LA RED le gustó la foto de Joaquin Gomez Galindo
Sábado
CREADOR DE LA RED comentó en la foto de Joaquin Gomez Galindo
Miniatura

NFPA 1281 INTERIOR FIRE.POR LA SFFMA

"FIREFIGHTERS AND FIRE MARSHALS ASSOCIATION OF TEXAS MUY BUENA LA CERTIFICACIÓN"
Sábado

JEFE
La foto de Joaquin Gomez Galindo se mostró en una publicación

NFPA 1281 INTERIOR FIRE.POR LA SFFMA

NFPA 1281 INTERIOR FIRE BRIGADE POR LA STATE FIREFIGHTERS AND FIRE MARSHALS ASSOCIATION OF TEXAS DIVISION ASSA C.A. LATINO AMÉRICA
Sábado
A CREADOR DE LA RED le gustó el blog ARTICULO TÉCNICO DE JUSTIN LANGE - "DESDE EL BALCÓN: REFLEXIONES SOBRE ABORDAJES EN INCENDIOS EN ALTURA" de CREADOR DE LA RED
Miércoles
A CREADOR DE LA RED le gustó el blog EL EJERCITO ARGENTINO REPARTE COMIDA EN LOS BARRIOS CARENCIADOS - ARGENTINA de CREADOR DE LA RED
Miércoles
A CREADOR DE LA RED le gustó el blog UN HOSPITAL VASCO HA COMENZADO A UTILIZAR LAS URNAS ELECTORALES COMO BARRERA ANTE EL CORONAVIRUS AL MOMENTO DE INTUBAR A LOS PACIENTES - ESPAÑA de CREADOR DE LA RED
Miércoles
Las 6 entradas de blog de CREADOR DE LA RED se mostraron en una publicación
Miércoles

JEFE
A JUan carlos Rodríguez caviedes le gustó el blog ASÍ HACE LA AUTOMOTRIZ SEAT LOS RESPIRADORES QUE LUEGO SE UTILIZAN EN LAS UCI DE ESPAÑA de CREADOR DE LA RED
Miércoles
A CREADOR DE LA RED le gustó el video de CREADOR DE LA RED
Miércoles
CREADOR DE LA RED publicó videos
Miércoles

Fotos

  • Agregar fotos
  • Ver todos

© 2020   Creada por CREADOR DE LA RED.   Con tecnología de

Insignias  |  Informar un problema  |  Términos de servicio